Recitation 4

1. Exercise 3.50: If the joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}24 x y & \text { for } 0<x<1,0<y<1, x+y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

find $\mathbb{P}\left(X+Y<\frac{1}{2}\right)$.

Solution:

The blue shaded region is the set of points (x, y) 's for which $f(x, y)>0$ (the joint probability density function is zero everywhere else), and the probability that we need to find is the integral of $f(x, y)$ over the portion of the blue region staying below the line $x+y=\frac{1}{2}$. Carrying out this integration, we obtain

$$
\begin{aligned}
\int_{0}^{1 / 2} \int_{0}^{\frac{1}{2}-x} 24 x y d y d x & =\int_{0}^{1 / 2} 12 x\left(\frac{1}{2}-x\right)^{2} d x \\
& =\int_{0}^{1 / 2} 12 x\left(\frac{1}{4}+x^{2}-x\right) d x \\
& =\int_{0}^{1 / 2}\left(3 x+12 x^{3}-12 x^{2}\right) d x=\frac{3}{8}+\frac{3}{16}-\frac{1}{2}=\frac{1}{16} .
\end{aligned}
$$

2. Exercise 3.53: If the joint density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{y} & \text { for } 0<x<y, 0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

find the probability that the sum of the values of X and Y will exceed $1 / 2$.

Solution:

The blue shaded region is the set of points (x, y) 's for which $f(x, y)>0$ (the joint probability density function is zero everywhere else). Note that the probability that we need to find is $\mathbb{P}(X+Y>1 / 2)$, and this is given by the integral of $f(x, y)$ over the portion of the blue region staying above the line $x+y=\frac{1}{2}$.
Alternatively, we can compute the integral of $f(x, y)$ over the lower portion of the blue region and subtract the value of the integral from one. That is, we compute

$$
\begin{aligned}
1- & \left(\int_{0}^{1 / 4} \int_{0}^{y} \frac{1}{y} d x d y+\int_{1 / 4}^{1 / 2} \int_{0}^{\frac{1}{2}-y} \frac{1}{y} d x d y\right) \\
& =1-\left(\int_{0}^{1 / 4} 1 d y+\int_{1 / 4}^{1 / 2}\left(\frac{1}{2 y}-1\right) d y\right)=1-\left(\frac{1}{4}+\frac{1}{2}(\ln (1 / 2)-\ln (1 / 4))-\frac{1}{4}\right)=1-\frac{1}{2} \ln 2 .
\end{aligned}
$$

3. Exercise 3.54: Find the joint probability density of the two random variables X and Y whose joint distribution is given by

$$
F(x, y)= \begin{cases}\left(1-e^{-x^{2}}\right)\left(1-e^{-y^{2}}\right) & \text { for } x>0, y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Solution: We have

$$
f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

wherever the partial derivatives exist. Partial differentiation yields

$$
\frac{\partial^{2}}{\partial x \partial y} F(x, y)=4 x y e^{-\left(x^{2}+y^{2}\right)}
$$

for $x>0$ and $y>0$ and 0 elsewhere. So we have

$$
f(x, y)= \begin{cases}4 x y e^{-\left(x^{2}+y^{2}\right)} & \text { for } x>0, y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

4. Exercise 3.62: Find k if the joint the probability distribution of X, Y, and Z is given by

$$
f(x, y, z)=k x y z
$$

for $x=1,2 ; y=1,2,3 ; z=1,2$.
Solution: Clearly, k must be non-negative. To find its value, we use the condition that the sum of $f(x, y, z)$ values for $x=1,2 y=1,2,3$ and $z=1,2$ is equal to one. That is, we must have $\sum_{x=1}^{2} \sum_{y=1}^{3} \sum_{z=1}^{2} f(x, y, z)=1$. Note that the sum can be computed as

$$
\sum_{x=1}^{2} \sum_{y=1}^{3} \sum_{z=1}^{2} f(x, y, z)=\sum_{x=1}^{2} \sum_{y=1}^{3} \sum_{z=1}^{2} k x y z=\sum_{x=1}^{2} \sum_{y=1}^{3} 3 k x y=\sum_{x=1}^{2} 18 k x=54 k .
$$

Hence $k=1 / 54$.
5. Exercise 3.63: With reference to Exercise 62, find
(a) $\mathbb{P}(X=1, Y \leq 2, Z=1)$.
(b) $\mathbb{P}(X=2, Y+Z=4)$.

Solution:

(a) $\mathbb{P}(X=1, Y \leq 2, Z=1)=f(1,1,1)+f(1,2,1)=3 / 54=1 / 18$.
(b) $\mathbb{P}(X=2, Y+Z=4)=f(2,2,2)+f(2,3,1)=14 / 54=7 / 27$.
6. Exercise 3.68: If the joint probability density of X, Y, and Z is given by

$$
f(x, y, z)= \begin{cases}\frac{1}{3}(2 x+3 y+z) & \text { for } 0<x<1,0<y<1,0<z<1 \\ 0 & \text { elsewhere }\end{cases}
$$

find
(a) $\mathbb{P}\left(X=\frac{1}{2}, Y=\frac{1}{2}, Z=\frac{1}{2}\right)$.
(b) $\mathbb{P}\left(X<\frac{1}{2}, Y<\frac{1}{2}, Z<\frac{1}{2}\right)$.

Solution:

(a) We have

$$
\mathbb{P}\left(X=\frac{1}{2}, Y=\frac{1}{2}, Z=\frac{1}{2}\right)=\int_{1}^{1} \int_{1}^{1} \int_{1}^{1} f(x, y, z) d z d z d z=0 .
$$

(b) We compute

$$
\begin{aligned}
\mathbb{P}\left(X<\frac{1}{2}, Y<\frac{1}{2}, Z<\frac{1}{2}\right) & =\int_{-\infty}^{\frac{1}{2}} \int_{-\infty}^{\frac{1}{2}} \int_{-\infty}^{\frac{1}{2}} f(x, y, z) d z d y d x \\
& =\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \frac{1}{3}(2 x+3 y+z) d z d y d x \\
& =\frac{1}{3} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}}(2 x+3 y+z) d z d y d x \\
& =\frac{1}{3} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}}\left(x+\frac{3}{2} y+\frac{1}{8}\right) d y d x \\
& =\frac{1}{3} \int_{0}^{\frac{1}{2}}\left(\frac{1}{2} x+\frac{1}{4}\right) d x=\frac{1}{3}\left(\frac{1}{16}+\frac{1}{8}\right)=\frac{1}{16} .
\end{aligned}
$$

7. Exercise 70 (a-b): With reference to Exercise 42 (see page 90); find
(a) the marginal distribution of X;
(b) the marginal distribution of Y.

Solution:

(a) Let $g(x)$ be the marginal distribution of X. Then, for $x=0,1,2$, we compute

$$
\begin{aligned}
& g(0)=\frac{1}{12}+\frac{1}{4}+\frac{1}{8}+\frac{1}{120}=\frac{56}{120}=\frac{7}{15} \\
& g(1)=\frac{1}{6}+\frac{1}{4}+\frac{1}{20}=\frac{28}{60}=\frac{7}{15} \\
& g(2)=\frac{1}{24}+\frac{1}{40}=\frac{8}{120}=\frac{1}{15}
\end{aligned}
$$

(b) Let $h(y)$ be the marginal distribution of Y. Then, for $y=0,1,2,3$, we compute

$$
\begin{aligned}
& h(0)=\frac{1}{12}+\frac{1}{6}+\frac{1}{24}=\frac{7}{24} \\
& h(1)=\frac{1}{4}+\frac{1}{4}+\frac{1}{40}=\frac{21}{40} \\
& h(2)=\frac{1}{8}+\frac{1}{20}=\frac{7}{40} \\
& h(3)=\frac{1}{120}
\end{aligned}
$$

8. Exercise 71 (a-c): Given the joint probability distribution

$$
f(x, y, z)=\frac{x y z}{108}, \quad \text { for } x=1,2,3 ; y=1,2,3 ; z=1,2
$$

find
(a) the joint marginal distribution of X and Y;
(b) the joint marginal distribution of X and Z;
(c) the marginal distribution of X.

Solution:

(a) Let $g(x, y)$ be the joint marginal distribution of X and Y. Then,

$$
g(x, y)=\sum_{z=1}^{2} f(x, y, z)=\sum_{z=1}^{2} \frac{x y z}{108}=\frac{x y}{36}, \quad \text { for } x=1,2,3 ; y=1,2,3 .
$$

(b) Let $h(x, z)$ be the joint marginal distribution of X and Z. Then, we compute it as

$$
h(x, z)=\sum_{y=1}^{3} f(x, y, z)=\sum_{y=1}^{3} \frac{x y z}{108}=\frac{x z}{18}, \quad \text { for } x=1,2,3 ; z=1,2 .
$$

(c) Let $\ell(x)$ the marginal distribution of X. We can compute it as

$$
\ell(x)=\sum_{y=1}^{3} \sum_{z=1}^{2} f(x, y, z)=\sum_{y=1}^{3} \sum_{z=1}^{2} \frac{x y z}{108}=\sum_{y=1}^{3} \frac{x y}{36}=\frac{x}{6}, \quad \text { for } x=1,2,3,
$$

Equivalently,

$$
\ell(x)=\sum_{y=1}^{3} g(x, y)=\sum_{y=1}^{3} \frac{x y}{36}=\frac{x}{6}, \quad \text { for } x=1,2,3 .
$$

or

$$
\ell(x)=\sum_{z=1}^{2} h(x, z)=\sum_{z=1}^{2} \frac{x z}{18}=\frac{x}{6}, \quad \text { for } x=1,2,3 .
$$

9. Exercises 74 a \& 75 a: If the joint density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{4}(2 x+y) & \text { for } 0<x<1,0<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

find
(a) the marginal density of X;
(b) the marginal density of Y.

Solution:

(a) Let $g(x)$ be the marginal density of X. Clearly, for $x \notin(0,1)$,

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y=0 .
$$

For $x \in(0,1)$, we have

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{2} \frac{1}{4}(2 x+y) d y=\frac{1}{4}(4 x+2)=\frac{1}{2}(2 x+1) .
$$

Hence,

$$
g(x)= \begin{cases}\frac{1}{2}(2 x+1) & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(b) Let $h(y)$ be the marginal density of Y. Likewise, for $y \notin(0,2)$,

$$
h(y)=\int_{-\infty}^{\infty} f(x, y) d x=0 .
$$

For $y \in(0,2)$, we have

$$
h(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{1} \frac{1}{4}(2 x+y) d x=\frac{1}{4}(1+y) .
$$

Hence,

$$
h(y)= \begin{cases}\frac{1}{4}(1+y) & \text { for } 0<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

10. Exercise 77: With reference to exercise 53, find
(a) the marginal density of X;
(b) the marginal density of Y.

Solution:

(a) Let $g(x)$ be the marginal density of X. Clearly, for $x \notin(0,1)$,

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y=0 .
$$

For $x \in(0,1)$, we have

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{x}^{1} \frac{1}{y} d y=\left.\ln y\right|_{x} ^{1}=-\ln x .
$$

(Note for TA's: mention that $\ln x<0$, for $x \in(0,1)$.)

Hence, we have

$$
g(x)= \begin{cases}-\ln x & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(b) Let $h(y)$ be the marginal density of Y. Likewise, for $y \notin(0,1)$,

$$
h(y)=\int_{-\infty}^{\infty} f(x, y) d x=0 .
$$

For $y \in(0,1)$, we have

$$
h(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{y} \frac{1}{y} d x=1 .
$$

Hence,

$$
h(y)= \begin{cases}1 & \text { for } 0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Recitation 6

1. Let X and Y be two discrete random variables with the joint probability distribution

$$
f(x, y)=\frac{1}{21}(x+y), \quad \text { for } x=1,2,3 ; y=1,2
$$

Find
(a) the marginal distribution of X;
(b) the conditional distribution of Y given $X=1$.

Solution:

(a) Let $f_{X}(x)$, for $x=1,2,3$, be the marginal distribution of X. Then we have

$$
f_{X}(x)=\sum_{y=1}^{2} f(x, y)=\sum_{y=1}^{2} \frac{1}{21}(x+y)=\frac{1}{21}(2 x+3), \quad \text { for } x=1,2,3
$$

(b) To find the conditional distribution of Y given $X=1$, we compute

$$
f_{Y \mid X}(y \mid 1)=\frac{f(1, y)}{f_{X}(1)}, \quad \text { for } y=1,2
$$

Note that $f_{X}(1)$ must be different than zero for the conditional distribution to make sense. In this case, we have $f_{X}(1)=\frac{5}{21} \neq 0$.
Carrying out the computation, we obtain

$$
f_{Y \mid X}(y \mid 1)=\frac{f(1, y)}{f_{X}(1)}=\frac{\frac{1}{21}(1+y)}{\frac{5}{21}}=\frac{1}{5}(1+y), \quad \text { for } y=1,2
$$

2. Let X and Y be two continuous random variables with the joint probability density

$$
f(x, y)= \begin{cases}24 x y & \text { for } 0<x<1,0<y<1, x+y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find
(a) the marginal density of Y;
(b) the conditional density of X given $Y=1 / 2$.

Solution:

Note for TA's: draw the $\mathrm{x}-\mathrm{y}$ axis and illustrate the region over which $f(x, y)>0$
(a) Let $f_{Y}(x)$ be the marginal density of Y. Clearly, for $y \notin(0,1)$,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=0
$$

For $y \in(0,1)$, we have

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{1-y} 24 x y d x=12 y \int_{0}^{1-y} 2 x d x=12 y(1-y)^{2}
$$

Hence,

$$
f_{Y}(y)= \begin{cases}12 y(1-y)^{2} & \text { for } 0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Note that in terms of the indicator function

$$
1_{(0,1)}(y)= \begin{cases}1 & \text { for } y \in(0,1) \\ 0 & \text { for } y \notin(0,1)\end{cases}
$$

we can rewrite the marginal density of Y as

$$
f_{Y}(y)=12 y(1-y)^{2} 1_{(0,1)}(y), \quad \text { for }-\infty<y<\infty
$$

(b) The function

$$
f_{X \mid Y}\left(x \left\lvert\, \frac{1}{2}\right.\right)=\frac{f\left(x, \frac{1}{2}\right)}{f_{y}\left(\frac{1}{2}\right)}, \quad \text { for }-\infty<x<\infty
$$

gives the conditional density of X given $Y=\frac{1}{2}$. Note that $f_{Y}\left(\frac{1}{2}\right)$ must be different from zero for this definition to make sense. Here, $f_{Y}\left(\frac{1}{2}\right)=\frac{3}{2} \neq 0$.
For $x \notin\left(0, \frac{1}{2}\right), f\left(x, \frac{1}{2}\right)=0$, and therefore $f_{X \mid Y}\left(x \left\lvert\, \frac{1}{2}\right.\right)=0$.
For $x \in\left(0, \frac{1}{2}\right)$, we have $f\left(x, \frac{1}{2}\right)=12 x$, and this gives

$$
f(x \mid 1)=\frac{12 x}{\frac{3}{2}}=8 x .
$$

Hence, we have

$$
f_{X \mid Y}\left(x \left\lvert\, \frac{1}{2}\right.\right)= \begin{cases}8 x & \text { for } 0<x<\frac{1}{2} \\ 0 & \text { elsewhere }\end{cases}
$$

Once again, in terms of the indicator function

$$
1_{\left(0, \frac{1}{2}\right)}(x)= \begin{cases}1 & \text { for } x \in\left(0, \frac{1}{2}\right) \\ 0 & \text { for } x \notin\left(0, \frac{1}{2}\right)\end{cases}
$$

we can rewrite the marginal density of Y as

$$
f_{X \mid Y}\left(x \left\lvert\, \frac{1}{2}\right.\right)=8 x 1_{\left(0, \frac{1}{2}\right)}(x), \quad \text { for }-\infty<x<\infty
$$

Reminder: For a set A, the indicator function $1_{A}(x)$ is defined as

$$
1_{A}(x)= \begin{cases}1 & \text { for } x \in A \\ 0 & \text { for } x \notin A .\end{cases}
$$

3. Exercise 70 (c-d): With reference to Exercise 42 (see page 90); find
(c) the conditional distribution of X given $Y=1$;
(d) the conditional distribution of Y given $X=0$.

Solution: In Recitation 5, we solved parts (a) and (b) as follows:
(a) Let $f_{X}(x)$ be the marginal distribution of X. Then, for $x=0,1,2$, we compute

$$
\begin{aligned}
& f_{X}(0)=\frac{1}{12}+\frac{1}{4}+\frac{1}{8}+\frac{1}{120}=\frac{56}{120}=\frac{7}{15} \\
& f_{X}(1)=\frac{1}{6}+\frac{1}{4}+\frac{1}{20}=\frac{28}{60}=\frac{7}{15} \\
& f_{X}(2)=\frac{1}{24}+\frac{1}{40}=\frac{8}{120}=\frac{1}{15}
\end{aligned}
$$

(b) Let $f_{Y}(y)$ be the marginal distribution of Y. Then, for $y=0,1,2,3$, we compute

$$
\begin{aligned}
& f_{Y}(0)=\frac{1}{12}+\frac{1}{6}+\frac{1}{24}=\frac{7}{24} \\
& f_{Y}(1)=\frac{1}{4}+\frac{1}{4}+\frac{1}{40}=\frac{21}{40} \\
& f_{Y}(2)=\frac{1}{8}+\frac{1}{20}=\frac{7}{40} \\
& f_{Y}(3)=\frac{1}{120}
\end{aligned}
$$

Let us now solve parts (c) and (d).
(c) Let $f(x, y)$ be the joint probability distribution of X and Y (as given in the table in Exercise 42). To find the conditional distribution of X given $Y=1$, we compute

$$
f_{X \mid Y}(x \mid 1)=\frac{f(x, 1)}{f_{Y}(1)}, \quad \text { for } x=0,1,2 .
$$

(Once again, note that $f_{Y}(1)$ must be different than zero for the conditional distribution to make sense. In this case, it does make sense since $\left.f_{Y}(1)=\frac{21}{40}\right)$.
Carrying out the computations, we obtain

$$
\begin{aligned}
& f_{X \mid Y}(0 \mid 1)=\frac{f(0,1)}{f_{Y}(1)}=\frac{\frac{1}{4}}{\frac{21}{40}}=\frac{10}{21} \\
& f_{X \mid Y}(1 \mid 1)=\frac{f(1,1)}{f_{Y}(1)}=\frac{\frac{1}{4}}{\frac{21}{40}}=\frac{10}{21} \\
& f_{X \mid Y}(2 \mid 1)=\frac{f(2,1)}{f_{Y}(1)}=\frac{\frac{1}{40}}{\frac{21}{40}}=\frac{1}{21}
\end{aligned}
$$

(d) To find the conditional distribution of Y given $X=0$, we compute

$$
f_{Y \mid X}(y \mid 0)=\frac{f(0, y)}{f_{X}(0)}, \quad \text { for } y=0,1,2,3
$$

(Again, $f_{X}(0)$ must be different than zero for the conditional distribution to make sense. In this case, it does make sense since $f_{X}(0)=\frac{7}{15}$).
Carrying out the computations, we obtain

$$
\begin{aligned}
& f_{Y \mid X}(0 \mid 0)=\frac{f(0,0)}{f_{X}(0)}=\frac{\frac{1}{12}}{\frac{7}{15}}=\frac{5}{28} \\
& f_{Y \mid X}(1 \mid 0)=\frac{f(0,1)}{f_{X}(0)}=\frac{\frac{1}{4}}{\frac{7}{15}}=\frac{15}{28} \\
& f_{Y \mid X}(2 \mid 0)=\frac{f(0,2)}{f_{X}(0)}=\frac{\frac{1}{8}}{\frac{7}{15}}=\frac{15}{56} \\
& f_{Y \mid X}(3 \mid 0)=\frac{f(0,3)}{f_{X}(0)}=\frac{\frac{1}{120}}{\frac{7}{15}}=\frac{1}{56} .
\end{aligned}
$$

4. Exercise 71 (d-e): Given the joint probability distribution

$$
f(x, y, z)=\frac{x y z}{108}, \quad \text { for } x=1,2,3 ; y=1,2,3 ; z=1,2
$$

find
(d) the conditional distribution of Z given $X=1$ and $Y=2$;
(e) the joint conditional distribution of Y and Z given $X=3$.

Solution: In Recitation 5, we solved parts (a), (b), (c) as follows.
(a) Let $f_{X, Y}(x, y)$ be the joint marginal distribution of X and Y. Then,

$$
f_{X, Y}(x, y)=\sum_{z=1}^{2} f(x, y, z)=\sum_{z=1}^{2} \frac{x y z}{108}=\frac{x y}{36}, \quad \text { for } x=1,2,3 ; y=1,2,3
$$

(b) Let $f_{X, Z}(x, z)$ be the joint marginal distribution of X and Z. Then, we compute it as

$$
f_{X, Z}(x, z)=\sum_{y=1}^{3} f(x, y, z)=\sum_{y=1}^{3} \frac{x y z}{108}=\frac{x z}{18}, \quad \text { for } x=1,2,3 ; z=1,2 .
$$

(c) Let $f_{X}(x)$ the marginal distribution of X. We can compute it as

$$
f_{X}(x)=\sum_{y=1}^{3} \sum_{z=1}^{2} f(x, y, z)=\sum_{y=1}^{3} \sum_{z=1}^{2} \frac{x y z}{108}=\sum_{y=1}^{3} \frac{x y}{36}=\frac{x}{6}, \quad \text { for } x=1,2,3,
$$

Equivalently,

$$
f_{X}(x)=\sum_{y=1}^{3} g(x, y)=\sum_{y=1}^{3} \frac{x y}{36}=\frac{x}{6}, \quad \text { for } x=1,2,3 .
$$

or

$$
f_{X}(x)=\sum_{z=1}^{2} h(x, z)=\sum_{z=1}^{2} \frac{x z}{18}=\frac{x}{6}, \quad \text { for } x=1,2,3 .
$$

Let us now solve parts (d) and (e).
(d) To find the conditional distribution of Z given $X=1$ and $Y=2$, we compute

$$
f_{Z \mid X, Y}(z \mid 1,2)=\frac{f(1,2, z)}{f_{X, Y}(1,2)}, \quad \text { for } z=1,2
$$

($f_{X, Y}(1,2)$ must be different than zero for the conditional distribution to make sense. It is easy to check that $f_{X, Y}(1,2)=1 / 18 \neq 0$.)
Using the explicit form of $f(x, y, z)$, we obtain

$$
f_{Z \mid X, Y}(z \mid 1,2)=\frac{\frac{2 z}{108}}{\frac{1}{18}}=\frac{z}{3}, \quad \text { for } z=1,2 .
$$

(e) To find the joint conditional distribution of Y and Z given $X=3$, we compute

$$
f_{Y, Z \mid X}(y, z \mid 3)=\frac{f(3, y, z)}{f_{X}(3)}, \quad \text { for } y=1,2,3 ; z=1,2 .
$$

($f_{X}(3)$ must be different than zero for the conditional distribution to make sense. It is easy to check that $f_{X}(3)=1 / 2 \neq 0$.)
Using the explicit form of $f(x, y, z)$, we obtain

$$
f_{Y, Z \mid X}(y, z \mid 3)=\frac{\frac{3 y z}{108}}{\frac{1}{2}}=\frac{y z}{18}, \quad \text { for } y=1,2,3 ; z=1,2 .
$$

5. Exercises $74 \mathrm{~b} \& 75 \mathrm{~b}$: If the joint density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{4}(2 x+y) & \text { for } 0<x<1,0<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

find
74 b) the conditional density of Y given $X=1 / 4$;
$75 \mathrm{~b})$ the conditional density of X given $Y=1$.

Solution:

Note for TA's: Remind the students that we can rewrite the joint density of X and Y in terms of the indicator function

$$
1_{(0,1) \times(0,2)}(x, y)= \begin{cases}1 & \text { for } 0<x<1,0<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

as

$$
f(x, y)=\frac{1}{4}(2 x+y) 1_{(0,1) \times(0,2)}(x, y) \quad \text { for }-\infty<x<\infty,-\infty<y<\infty .
$$

This is in line with the definition of $1_{A}(x)$ given earlier; we simply consider A as a subset of \mathbb{R}^{2} and x as a point in \mathbb{R}^{2}. In this question, our set is $(0,1) \times(0,2)$. Note that, in this case, we can write the indicator function as the product of $1_{(0,1)}(x)$ and $1_{(0,2)}(y)$. However, this decomposition (as a product) may not hold for all subset of \mathbb{R}^{2}. Consider the set $S=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1,0<y<1, x+y<1\right\}$ given in question 2 above. We can not write

$$
1_{S}(x, y)= \begin{cases}1 & \text { for }(x, y) \in S \\ 0 & \text { elsewhere }\end{cases}
$$

as the product of $1_{B}(x)$ and $1_{C}(y)$ for some subsets B and C of \mathbb{R}. (end of the note)

In Recitation 5, we solved part 74 a \& 75 a as follows:
74 a) Let $f_{X}(x)$ be the marginal density of X. Clearly, for $x \notin(0,1)$,

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=0
$$

For $x \in(0,1)$, we have

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{2} \frac{1}{4}(2 x+y) d y=\frac{1}{4}(4 x+2)=\frac{1}{2}(2 x+1)
$$

Hence,

$$
f_{X}(x)=\frac{1}{2}(2 x+1) 1_{(0,1)}(x), \quad \text { for }-\infty<x<\infty
$$

in terms of the indicator function

$$
1_{(0,1)}(x)= \begin{cases}1 & \text { for } x \in(0,1) \\ 0 & \text { for } x \notin(0,1)\end{cases}
$$

Clearly we can also write the marginal density of X as

$$
f_{X}(x)= \begin{cases}\frac{1}{2}(2 x+1) & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

75 a) Let $f_{Y}(y)$ be the marginal density of Y. Likewise, for $y \notin(0,2)$,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=0
$$

For $y \in(0,2)$, we have

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{1} \frac{1}{4}(2 x+y) d x=\frac{1}{4}(1+y) .
$$

Hence,

$$
f_{Y}(y)=\frac{1}{4}(1+y) 1_{(0,2)}(y) \quad \text { for }-\infty<y<\infty
$$

Now let us solve 74 b \& 75 b.
74 b) The function

$$
f_{Y \mid X}\left(y \left\lvert\, \frac{1}{4}\right.\right)=\frac{f\left(\frac{1}{4}, y\right)}{f_{X}\left(\frac{1}{4}\right)}, \quad \text { for }-\infty<y<\infty
$$

gives the conditional density of Y given $X=1 / 4$ (again note that $f_{X}(1 / 4)=3 / 4 \neq 0$).
For $y \notin(0,2), f\left(\frac{1}{4}, y\right)=0$, and therefore $f_{Y \mid X}\left(y \left\lvert\, \frac{1}{4}\right.\right)=0$.
For $y \in(0,2)$, we have $f\left(\frac{1}{4}, y\right)=\frac{1}{4}\left(\frac{1}{2}+y\right)$, and this gives

$$
f_{Y \mid X}\left(y \left\lvert\, \frac{1}{4}\right.\right)=\frac{\frac{1}{4}\left(\frac{1}{2}+y\right)}{\frac{3}{4}}=\frac{1}{3}\left(\frac{1}{2}+y\right)=\frac{1}{6}(1+2 y) .
$$

Hence, we have

$$
f_{Y \mid X}\left(y \left\lvert\, \frac{1}{4}\right.\right)=\frac{1}{6}(1+2 y) 1_{(0,2)}(y), \quad \text { for }-\infty<x<\infty .
$$

75 b) The function

$$
f_{X \mid Y}(x \mid 1)=\frac{f(x, 1)}{f_{Y}(1)}, \quad \text { for }-\infty<x<\infty
$$

gives the conditional density of X given $Y=1$ (again note that $f_{Y}(1)=1 / 2 \neq 0$).
For $x \notin(0,1), f(x, 1)=0$, and therefore $f_{X \mid Y}(x \mid 1)=0$.
For $x \in(0,1)$, we have $f(x, 1)=\frac{1}{4}(2 x+1)$, and this gives

$$
f_{X \mid Y}(x \mid 1)=\frac{\frac{1}{4}(2 x+1)}{\frac{1}{2}}=\frac{1}{2}(2 x+1) .
$$

Hence, we have

$$
f_{X \mid Y}(x \mid 1)=\frac{1}{2}(2 x+1) 1_{(0,1)}(x), \quad \text { for }-\infty<x<\infty .
$$

6. Let X and Y be two continuous random variables with the joint density

$$
f(x, y)= \begin{cases}\frac{1}{y} & \text { for } 0<x<y, 0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find
(a) the conditional density of Y given $X=1 / 2$.
(b) the conditional density of X given $Y=1 / 4$.

Solution: The marginal densities of X and Y are computed in Recitation 5 (see the solution of Exercise 77). We obtained these functions last recitation as follows:

74 a) Let $f_{X}(x)$ be the marginal density of X. Clearly, for $x \notin(0,1)$,

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=0
$$

For $x \in(0,1)$, we have

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{x}^{1} \frac{1}{y} d y=\left.\ln y\right|_{x} ^{1}=-\ln x
$$

Hence, we have

$$
f_{X}(x)=-\ln (x) 1_{(0,1)}(x), \quad \text { for }-\infty<x<\infty .
$$

75 a) Let $f_{Y}(y)$ be the marginal density of Y. Likewise, for $y \notin(0,1)$,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=0
$$

For $y \in(0,1)$, we have

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{y} \frac{1}{y} d x=1
$$

Hence,

$$
f_{Y}(y)=1_{(0,1)}(x), \quad \text { for }-\infty<x<\infty .
$$

Now let us solve our exercise.
(a) The function

$$
f_{Y \mid X}\left(y \left\lvert\, \frac{1}{2}\right.\right)=\frac{f\left(\frac{1}{2}, y\right)}{f_{X}\left(\frac{1}{2}\right)}, \quad \text { for }-\infty<y<\infty
$$

gives the conditional density of Y given $X=1 / 2$ (again note that $f_{X}(1 / 2)=\ln 2 \neq 0$), Note for TA's: remind the students that $\ln 2>0$.

For $y \notin\left(\frac{1}{2}, 1\right), f\left(\frac{1}{2}, y\right)=0$, and therefore $f_{Y \mid X}\left(y \left\lvert\, \frac{1}{2}\right.\right)=0$.
For $y \in\left(\frac{1}{2}, 1\right)$, we have $f\left(\frac{1}{2}, y\right)=\frac{1}{y}$, and this gives

$$
f_{Y \mid X}\left(y \left\lvert\, \frac{1}{2}\right.\right)=\frac{\frac{1}{y}}{\ln 2}=\frac{1}{y \ln 2} .
$$

Hence, we have

$$
f_{Y \mid X}\left(y \left\lvert\, \frac{1}{2}\right.\right)=\frac{1}{y \ln 2} 1_{\left(\frac{1}{2}, 1\right)}(y), \quad \text { for }-\infty<y<\infty
$$

(b) The function

$$
f_{X \mid Y}\left(x \left\lvert\, \frac{1}{4}\right.\right)=\frac{f\left(x, \frac{1}{4}\right)}{f_{Y}\left(\frac{1}{4}\right)}, \quad \text { for }-\infty<x<\infty
$$

gives the conditional density of X given $Y=1 / 4$ (again note that $f_{Y}(1 / 4)=1 \neq 0$).
For $x \notin\left(0, \frac{1}{4}\right), f\left(x, \frac{1}{4}\right)=0$, and therefore $f_{X \mid Y}\left(x \left\lvert\, \frac{1}{4}\right.\right)=0$.
For $x \in\left(0, \frac{1}{4}\right)$, we have $f\left(x, \frac{1}{4}\right)=4$, and this gives

$$
f_{X \mid Y}\left(x \left\lvert\, \frac{1}{4}\right.\right)=\frac{4}{1}=4 .
$$

Hence, we have

$$
f_{X \mid Y}\left(x \left\lvert\, \frac{1}{4}\right.\right)=4 \cdot 1_{\left(0, \frac{1}{4}\right)}(x), \quad \text { for }-\infty<x<\infty
$$

7. Exercise 78: With reference to Example 22 (see page 94), find
(a) the conditional density of X_{2} given $X_{1}=\frac{1}{3}$ and $X_{3}=2$;
(b) the joint conditional density of X_{2} and X_{3} given $X_{1}=\frac{1}{2}$.

Solution:

(a) In Example 22, the joint marginal density of X_{1} and X_{3} is computed as

$$
f_{X_{1}, X_{3}}\left(x_{1}, x_{3}\right)= \begin{cases}\left(x_{1}+\frac{1}{2}\right) e^{-x_{3}} & \text { for } 0<x_{1}<1, x_{3}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Note for TA's: If you are not convinced that the students have a good understanding of marginals (if you think you have enough time), you may go over the derivation of the joint marginal density of X_{1} and X_{3} given in Example 22.

The conditional density of X_{2} given $X_{1}=\frac{1}{3}$ and $X_{3}=2$ is given by the function

$$
f_{X_{2} \mid X_{1}, X_{3}}\left(x_{2} \left\lvert\, \frac{1}{3}\right., 2\right)=\frac{f\left(\frac{1}{3}, x_{2}, 2\right)}{f_{X_{1}, X_{3}}\left(\frac{1}{3}, 2\right)}, \quad \text { for }-\infty<x_{2}<\infty .
$$

(Again, note that $f_{X_{1}, X_{3}}\left(\frac{1}{3}, 2\right)=\frac{5}{6} e^{-2} \neq 0$.)
For $x_{2} \notin(0,1), f\left(\frac{1}{3}, x_{2}, 2\right)=0$, and therefore $f_{X_{2} \mid X_{1}, X_{3}}\left(x_{2} \left\lvert\, \frac{1}{3}\right., 2\right)=0$.
For $x_{2} \in(0,1)$, we have $f\left(\frac{1}{3}, x_{2}, 2\right)=\left(\frac{1}{3}+x_{2}\right) e^{-2}$, and this gives

$$
f_{X_{2} \mid X_{1}, X_{3}}\left(x_{2} \left\lvert\, \frac{1}{3}\right., 2\right)=\frac{\left(\frac{1}{3}+x_{2}\right) e^{-2}}{\frac{5}{6} e^{-2}}=\frac{6}{5}\left(\frac{1}{3}+x_{2}\right)=\frac{2}{5}\left(1+3 x_{2}\right) .
$$

Hence, we have

$$
f_{X_{2} \mid X_{1}, X_{3}}\left(x_{2} \left\lvert\, \frac{1}{3}\right., 2\right)= \begin{cases}\frac{2}{5}\left(1+3 x_{2}\right) & \text { for } 0<x_{2}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(b) In Example 22, the marginal density of X_{1} is computed as

$$
g\left(x_{1}\right)= \begin{cases}x_{1}+\frac{1}{2} & \text { for } 0<x_{1}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Note for TA's: If you are not convinced that the students have a good understanding of marginals (if you think you have enough time), you may go over the derivation of the joint marginal density of X_{1} given in Example 22.

The joint conditional density of X_{2} and X_{3} given $X_{1}=\frac{1}{2}$ is given by the function

$$
f_{X_{2}, X_{3} \mid X_{1}}\left(x_{2}, x_{3} \left\lvert\, \frac{1}{2}\right.\right)=\frac{f\left(\frac{1}{2}, x_{2}, x_{3}\right)}{f_{X_{1}}\left(\frac{1}{2}\right)}, \quad \text { for }-\infty<x_{2}<\infty \text { and }-\infty<x_{3}<\infty .
$$

(Again, note that $f_{X_{1}}\left(\frac{1}{2}\right)=1 \neq 0$.)
For $x_{2} \notin(0,1)$ or $x_{3} \leq 0, f\left(\frac{1}{2}, x_{2}, x_{3}\right)=0$, and therefore $f_{X_{2}, X_{3} \mid X_{1}}\left(x_{2}, x_{3} \left\lvert\, \frac{1}{2}\right.\right)=0$.
For $x_{2} \in(0,1)$ and $x_{3}>0$, we have $f\left(\frac{1}{2}, x_{2}, x_{3}\right)=\left(\frac{1}{2}+x_{2}\right) e^{-x_{3}}$, and this gives

$$
f_{X_{2}, X_{3} \mid X_{1}}\left(x_{2}, x_{3} \left\lvert\, \frac{1}{2}\right.\right)=\frac{\left(\frac{1}{2}+x_{2}\right) e^{-x_{3}}}{1}=\left(\frac{1}{2}+x_{2}\right) e^{-x_{3}} .
$$

Hence, we have

$$
f_{X_{2}, X_{3} \mid X_{1}}\left(x_{2}, x_{3} \left\lvert\, \frac{1}{2}\right.\right)= \begin{cases}\left(\frac{1}{2}+x_{2}\right) e^{-x_{3}} & \text { for } 0<x_{2}<1 \text { and } x_{3}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

8. Let X and Y be two continuous random variables whose joint distribution function is given by

$$
F(x, y)= \begin{cases}\left(1-e^{-x^{2}}\right)\left(1-e^{-y^{2}}\right) & \text { for } x>0, y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Determine whether X and Y are independent.

Solution: Let $F_{X}(x)$ be the distribution function of X, and let $F_{Y}(y)$ be the distribution function of Y. Note that we have $F_{X}(x)=F(x, \infty)$ for all $-\infty<x<\infty$, and $F_{Y}(y)=F(\infty, y)$ for all $-\infty<y<\infty$. That is, we have

$$
\begin{aligned}
& F_{X}(x)= \begin{cases}\left(1-e^{-x^{2}}\right) & \text { for } x>0 \\
0 & \text { elsewhere }\end{cases} \\
& F_{Y}(y)= \begin{cases}\left(1-e^{-y^{2}}\right) & \text { for } y>0 \\
0 & \text { elsewhere }\end{cases}
\end{aligned}
$$

It is easy to verify that we have $F(x, y)=F_{X}(x) F_{Y}(y)$, for all $-\infty<x<\infty$ and $-\infty<y<\infty$. Hence, X and Y are independent.
9. With reference to Exercise 42, determine whether X and Y are independent.

Solution: We already computed the marginal distribution $f_{X}(x)$ of X and the marginal distribution $f_{Y}(y)$ of Y. (see the solution of Exercise 70 above).
For example with $x=1$ and $y=3$, we have

$$
f_{X}(1)=\frac{7}{15} \quad \text { and } \quad f_{Y}(3)=\frac{1}{120}
$$

whereas $f(1,3)=0$. Hence X and Y are not independent.
10. Let X and Y be two independent random variables with the marginal densities

$$
\begin{aligned}
f_{X}(x) & = \begin{cases}e^{-x} & \text { for } x>0 \\
0 & \text { elsewhere }\end{cases} \\
f_{Y}(y) & = \begin{cases}e^{-y} & \text { for } y>0 \\
0 & \text { elsewhere }\end{cases}
\end{aligned}
$$

Find
(a) the distribution function of $Z=X+Y$;
(b) the density of Z.

Solution: Note that since X and Y are independent, their joint density is given by the product of marginal densities. That is, if we let $f(x, y)$ be their joint density, then we have $f(x, y)=f_{X}(x) f_{Y}(y)$ for all $-\infty<x<\infty$ and $-\infty<y<\infty$. Using the marginal densities given in the question, we can write the function $f(x, y)$ as

$$
f(x, y)= \begin{cases}e^{-(x+y)} & \text { for } x>0 \text { and } y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Let $F_{Z}(z)$ be the distribution of Z. Clearly Z takes values on $(0, \infty)$. Hence, for $z \leq 0, F_{Z}(z)=0$.

For $z>0$, we compute

$$
\begin{aligned}
F_{Z}(z)=\mathbb{P}(Z \leq z) & =\mathbb{P}(X+Y \leq z) \\
& =\int_{0}^{z} \int_{0}^{z-x} f_{X, Y}(x, y) d y d x \\
& =\int_{0}^{z} \int_{0}^{z-x} e^{-(x+y)} d y d x \\
& =\int_{0}^{z} e^{-x} \int_{0}^{z-x} e^{-y} d y d x \\
& =\int_{0}^{z} e^{-x}\left(1-e^{-(z-x)}\right) d x \\
& =\int_{0}^{z}\left(e^{-x}-e^{-z}\right) d x=1-e^{-z}-z e^{-z} .
\end{aligned}
$$

Hence we have

$$
F_{Z}(z)= \begin{cases}1-e^{-z}-z e^{-z} & \text { for } z>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Note that the distribution function for $z>0$ can also be obtained using the convolution formula discussed in class. That is;

$$
F_{Z}(z)=\int_{0}^{z} f_{X}(x) F_{Y}(z-x) d x
$$

where $F_{Y}(y)$ denotes the distribution function of Y. For $y \leq 0, F_{Y}(y)=\int_{-\infty}^{y} f_{Y}(u) d u$ is obviously zero, and for $y>0$ we have

$$
F_{Y}(y)=\int_{-\infty}^{z} f_{Y}(u) d u=\int_{0}^{z} e^{-u} d u=1-e^{-z}
$$

Hence we have $F_{Y}(y)=\left(1-e^{-z}\right) 1_{(0, \infty)}(y)$.
When we go back to the convolution formula (for the distribution function), we obtain

$$
F_{Z}(z)=\int_{0}^{z} f_{X}(x) F_{Y}(z-x) d x=\int_{0}^{z} e^{-x}\left(1-e^{-(z-x)}\right) d x
$$

and this gives the same result for $z>0$.
(b) Let $f_{Z}(z)$ the density of Z. Note that we have $f_{Z}(z)=F_{Z}^{\prime}(z)$ wherever $F_{Z}(z)$ is differentiable.

$$
\begin{aligned}
& \text { For } z>0, \quad F_{Z}^{\prime}(z)=e^{-z}-e^{-z}+z e^{-z}=z e^{-z} \\
& \text { For } z<0, \quad F_{Z}^{\prime}(x)=0 .
\end{aligned}
$$

The assignment at the point $z=0$ does not matter. We can set it to zero for convenience. Hence, we write

$$
f_{Z}(z)= \begin{cases}z e^{-z} & \text { for } z>0 \\ 0 & \text { for } z \leq 0\end{cases}
$$

The density function of Z can also be obtained directly without finding the distribution first. For $z>0$, the density can be found using the convolution formula (for the density function) as

$$
f_{Z}(z)=\int_{0}^{z} f_{X}(x) f_{Y}(z-x) d x=\int_{0}^{z} e^{-x} e^{-(z-x)} d x=\int_{0}^{z} e^{-z} d x=z e^{-z} .
$$

Since both X and Y take values on $(0, \infty)$, the density function $f_{Z}(z)$ for $z \leq 0$ can be immediately written as zero.

