Mathematics 1052, Calculus II
 Exam 1, April 14th, 2012

Name:
Student Number

1	2	3	4	5	6	7	Total
8 pts	12 pts	15 pts	20 pts	15 pts	15 pts	15 pts	100 pts

This exam has 7 questions for a total of 100 points on 6 pages.

Please write your name and Bahçeşehir student number above. Read the problems carefully. You must show your work to get credit. Your solutions must be supported by calculations and/or explanations: no points will be given for answers that are not accompanied by supporting work. You must observe the honor code. Read and sign the following statement:

I have not given to, nor received any help from any of my classmates during this exam

Signature

1. (8 points) Calculate the derivative

$$
\frac{d}{d x} \int_{\sqrt{x^{3}}}^{x^{2}} \tan (t) \ln ^{3} \sin (t) d t
$$

Solution: We are going to use the Leibniz Rule to calculate the derivative.

$$
\frac{d}{d x} \int_{\sqrt{x^{3}}}^{x^{2}} \tan (t) \ln ^{3} \sin (t) d t=\tan \left(x^{2}\right) \ln ^{3}\left(\sin \left(x^{2}\right)\right) 2 x-\tan \left(x^{3 / 2}\right) \ln ^{3}\left(\sin \left(x^{3 / 2}\right)\right) \frac{3}{2} \sqrt{x}
$$

Mathematics 1052 Exam 1, April 14th, 2012

2. (a) (7 points) Write the lower (in this case left) Riemann Sum for the function $f(x)=$ $\sqrt{1+x^{2}}$ on the interval $[0,2]$ with $n=5$ subintervals of equal length.

Solution: Since $\sqrt{1+x^{2}}$ is an increasing function on the interval [0, 2], the lower Riemann sum is the same as left Riemann sum. When we split the interval [0,2] into 5 equal pieces we get our $\Delta x=2 / 5=0.4$, and our partition points become ($0,0.4,0.8,1.2,1.6,2$). Then the left Riemann sum gives us

$$
0.4(\sqrt{1+0}+\sqrt{1+0.16}+\sqrt{1+0.64}+\sqrt{1+1.44}+\sqrt{1+2.56})
$$

(b) (5 points) Calculate the difference between the upper and lower Riemann Sums for the set-up given in part (a). [For the same function, on the same interval, with $n=5$.]

Solution: The upper Riemann sum is

$$
0.4(\sqrt{1+0.16}+\sqrt{1+0.64}+\sqrt{1+1.44}+\sqrt{1+2.56}+\sqrt{1+4})
$$

and therefore the difference is

$$
0.4(\sqrt{5}-1)
$$

Mathematics 1052 Exam 1, April 14th, 2012

3. Consider the region bounded by the y-axis and the curves $y=\sin (x)$ and $y=\cos (x)$ on the interval $[0, \pi / 4]$.
(a) (5 points) Express (but do not compute) the area of the region as an integral over the x-axis.

Solution:

$$
\int_{0}^{\pi / 4} \cos (x)-\sin (x) d x
$$

(b) (5 points) Express (but do not compute) the are of the region as an integral over the y-axis.

Solution:

$$
\int_{0}^{\sqrt{2} / 2} \arcsin (y) d y+\int_{\sqrt{2} / 2}^{1} \arccos (y) d y
$$

(c) (5 points) Evaluate one of the integrals above.

Solution:

$$
\begin{aligned}
\int_{0}^{\pi / 4} \cos (x)-\sin (x) d x & =\sin (x)+\left.\cos (x)\right|_{0} ^{\pi / 4} \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-0-1=\sqrt{2}-1
\end{aligned}
$$

Mathematics 1052 Exam 1, April 14th, 2012

4. Calculate the following indefinite integrals:
(a) (5 points) $\int \frac{2 x}{\sqrt{x^{2}+1}} d x$

Solution: We will use a substitution: $u=x^{2}+1$, and we get $d x=2 x d x$. Then

$$
\int \frac{2 x}{\sqrt{x^{2}+1}} d x=\int \frac{d u}{\sqrt{u}}=\int u^{-1 / 2} d u=2 u^{1 / 2}+c=2 \sqrt{x^{2}+1}+c
$$

(b) (15 points) $\int \frac{2 x^{3}}{\sqrt{x^{2}+1}} d x$

Solution: Use the same substitution we have used above: $u=x^{2}+1$ and $d u=2 x d x$. Then $x^{2}=(u-1)$ and we get

$$
\begin{aligned}
\int \frac{2 x^{3}}{\sqrt{x^{2}+1}} d x & =\int \frac{x^{2}}{\sqrt{x^{2}+1}} 2 x d x=\int \frac{(u-1)}{\sqrt{u}} d u \\
& =\int\left(\frac{u}{\sqrt{u}}-\frac{1}{\sqrt{u}}\right) d u=\int\left(u^{1 / 2}-u^{-1 / 2}\right) d u \\
& =\frac{2}{3} u^{3 / 2}-2 u^{1 / 2}+c=\frac{2\left(x^{2}+1\right)^{3 / 2}}{3}-2 \sqrt{x^{2}+1}+c
\end{aligned}
$$

Solution: Use trigonometric substitution: $x=\tan (\theta)$ then $d x=\sec ^{2}(\theta) d \theta$ and we also have $x^{2}+1=\tan ^{2}(\theta)+1=\sec ^{2}(\theta)$. This gives us

$$
\begin{aligned}
\int \frac{2 x^{3}}{\sqrt{x^{2}+1}} d x & =\int \frac{2 \tan ^{3}(\theta)}{\sec (\theta)} \sec ^{2}(\theta) d \theta=\int 2 \tan ^{3}(\theta) \sec (\theta) d \theta \\
& =\int 2 \tan ^{2}(\theta) \tan (\theta) \sec (\theta) d \theta \\
& =\int 2\left(\sec ^{2}(\theta)-1\right) \tan (\theta) \sec (\theta) d \theta
\end{aligned}
$$

Now, perform an ordinary subsitution $u=\sec (\theta)$ and $d u=\tan (\theta) \sec (\theta) d \theta$ and we get

$$
=\int 2\left(u^{2}-1\right) d u=\frac{2 u^{3}}{3}-2 u+c=\frac{2 \sec ^{3}(\theta)}{3}-2 \sec (\theta)+c
$$

Now, sketch a right triangle with $\tan (\theta)=x$ and read $\sec (\theta)$ as $\sqrt{x^{2}+1}$. Then we get the result as

$$
\frac{2\left(x^{2}+1\right)^{3 / 2}}{3}-2 \sqrt{x^{2}+1}+c
$$

Mathematics 1052 Exam 1, April 14th, 2012

5. (15 points) Calculate the indefinite integral $\int \sec ^{3}(\theta) \tan ^{3}(\theta) d \theta$

Solution: Use substitution $u=\sec (\theta)$ and $d u=\sec (\theta) \tan (\theta) d \theta$. Now, we re-write the integral as

$$
\begin{aligned}
\int \sec ^{3}(\theta) \tan ^{3}(\theta) d \theta & =\int \sec ^{2}(\theta) \tan ^{2}(\theta) \sec (\theta) \tan (\theta) d \theta \\
& =\int \sec ^{2}(\theta)\left(\sec ^{2}(\theta)-1\right) \sec (\theta) \tan (\theta) d \theta \\
& =\int u^{2}\left(u^{2}-1\right) d u=\int\left(u^{4}-u^{2}\right) d u=\frac{u^{5}}{5}-\frac{u^{3}}{3}+c \\
& =\frac{\sec ^{5}(\theta)}{5}-\frac{\sec ^{3}(\theta)}{3}+c
\end{aligned}
$$

6. (15 points) Calculate the definite integral $\int_{0}^{1} \arcsin (x) d x$.

Solution: We will use integration by parts with $f=\arcsin (x)$ and $d g=d x$. Then we get $d f=\frac{d x}{\sqrt{1-x^{2}}}$ and $g=x$. This yields

$$
\int_{0}^{1} \arcsin (x) d x=\left.x \arcsin (x)\right|_{0} ^{1}-\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{2}}}=\frac{\pi}{2}-\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{2}}}
$$

Now, we use a substitution $u=1-x^{2}$ and $d u=-2 x d x$. Along with it, we change the boundaries. At $x=0$ we have $u=1$ and at $x=1$ we have $u=0$. Then

$$
=\frac{\pi}{2}+\frac{1}{2} \int_{1}^{0} \frac{d u}{\sqrt{u}}=\frac{\pi}{2}+\left.\sqrt{u}\right|_{1} ^{0}=\frac{\pi}{2}-1
$$

Mathematics 1052 Exam 1, April 14th, 2012

7. (15 points) Calculate the indefinite integral

$$
\int \frac{x+2}{(x-2)\left(x^{2}+4\right)} d x
$$

Solution: We will use the method of partial fractions:

$$
\frac{x+2}{(x-2)\left(x^{2}+4\right)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+4}
$$

and we get

$$
x+2=A\left(x^{2}+4\right)+(B x+C)(x-2)
$$

At $x=2$ we get $A=\frac{1}{2}$. At $x=0$ we get

$$
2=4 A-2 C=2-2 C
$$

which means $C=0$. Now, at $x=1$ we see

$$
3=5 A-(B+C)=\frac{5}{2}-B
$$

and $B=-\frac{1}{2}$. Then we get an integral of the form

$$
\int \frac{x+2}{(x-2)\left(x^{2}+4\right)} d x=\int \frac{1}{2} \cdot \frac{1}{x-2}-\frac{1}{2} \cdot \frac{x}{x^{2}+4} d x
$$

Now, for the second integral we use a substitution $u=x^{2}+4$ and $d u=2 x d x$

$$
\begin{aligned}
& =\frac{1}{2} \ln (x-2)-\frac{1}{4} \int \frac{d u}{u} \\
& =\frac{\ln (x-2)}{2}-\frac{\ln (u)}{4}+c=\frac{\ln (x-2)}{2}-\frac{\ln \left(x^{2}+4\right)}{4}+c
\end{aligned}
$$

